
TIME-DEPENDENT CROSS-PROBABILITY MODEL FOR FEATURE VECTOR
NORMALIZATION

Luis Buera, Eduardo Lleida, Antonio Miguel, Alfonso Ortega, Óscar Saz

Communication Technologies Group (GTC)
I3A, University of Zaragoza, Spain

{lbuera,lleida,amiguel,ortega,oskarsaz}@unizar.es

ABSTRACT

In previous works, Multi-Environment Model based LInear
Normalization, MEMLIN, and Phoneme-Dependent MEMLIN,
PD-MEMLIN, were presented and they were proved to be effec-
tive to compensate environment mismatch. Both are empirical
feature vector normalization techniques which model clean and
noisy spaces with Gaussian Mixture Models, GMMs, and the
probability of the clean model Gaussian, given the noisy model
one and the noisy feature vector (cross-probability model) is
a critical point in both algorithms. In the previous works the
cross-model probability was approximated as time-independent.
However, in this paper, a time-dependent estimation based on
GMM is proposed for MEMLIN and PD-MEMLIN. Some ex-
periments with SpeechDat Car database were carried out in
order to study the performance of the proposed estimation of
the cross-probability model in a real acoustic environment,
obtaining important improvements: 78.48% and 76.76% of
mean improvement in Word Error Rate, WER, for MEMLIN
and PD-MEMLIN, respectively (70.21% and 75.44% if time-
independent cross-probability model is applied).

1. INTRODUCCIÓN

When training and testing acoustic conditions differ, the accu-
racy of speech recognition systems rapidly degrades. To com-
pensate for this mismatch, robustness techniques have been
developed along the following two main lines of research:
acoustic model adaptation methods, and feature vector adapta-
tion/normalization methods. Also, some of the techniques can
be combined to generate hybrid solutions, which are effective
under certain conditions [1]. In general, acoustic model adap-
tation methods produce the best results [2] because they can
model the uncertainty caused by the noise statistics. However,
these methods require more data and computing time than do
feature vector adaptation/normalization methods, which do not
produce as good results but provide more on line solutions. So,
the choice of a robustness technique depends on the characteris-
tics of the application in each situation.

Feature vector adaptation/normalization methods fall into
one of three main classes [3]: high-pass filtering, which contains
very simple methods such Cepstral Mean Normalization, CMN,
model-based techniques, which assumes a structural model of
environmental degradation, and empirical compensation, which
uses direct cepstral comparisons. In any case, and independently
of the class, some algorithms assume a prior probability den-
sity function (pdf) for the estimation variable. In those cases,
a Bayesian estimator can be used to estimate the clean feature
vector. The most commonly used criterion is to minimizethe
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Mean Square Error (MSE), and the optimal estimator for this
criterion, Minimum Mean Square Error (MMSE), is the mean
of the posterior pdf. Methods, such as Stereo-based Piecewise
Linear Compensation for Environments (SPLICE) [4], Multi-
Environment Model-based LInear Normalization (MEMLIN)
[5], or Phoneme-Dependent MEMLIN [6], use the MMSE es-
timator to compute the estimated clean feature vector.

The previous works [5] [6] show that MEMLIN and PD-
MEMLIN are effective to compensate the effects of dynamic
and adverse car conditions. MEMLIN is an empirical feature
vector normalization technique based on stereo data and the
MMSE estimator. MEMLIN splits the noisy space into several
basic environments and each of them and clean feature space are
modelled using GMMs. Therefore, a bias vector transformation
is associated with each pair of Gaussians from the clean and the
noisy basic environment spaces. On the other hand, the main
difference of PD-MEMLIN concerning MEMLIN consists on
splitting the clean and noisy basic environments into phonemes
that are modelled using GMMs.

A critical point in MEMLIN and PD-MEMLIN is the es-
timation of the cross-probability model: the probability of the
clean model Gaussian, given the noisy model one, the noisy fea-
ture vector and the phoneme (only in PD-MEMLIN). In [5] [6],
a time-independent solution is considered. This work focuses
on this term and it is proposed a time-dependent solution, mod-
elling the noisy feature vectors associated to each pair of Gaus-
sians from the clean and the noisy basic environment spaces
(and the phoneme in PD-MEMLIN) with a GMM.

This paper is organized as follows: In Section 2, an
overview of PD-MEMLIN is detailed. In Section 3, some
experiments are presented to show the importance of the
cross-probability model estimation. The new proposed cross-
probability model based on GMM is explained in Section 4. The
results with Spanish SpeechDat Car database [7] are included in
Section 5. Finally, the conclusions are presented in Section 6.

2. PD-MEMLIN OVERVIEW

Phoneme Dependent Multi-Environment Models based LInear
Normalization is an empirical feature vector normalization tech-
nique which uses stereo data in order to estimate the differ-
ent compensation linear transformations in a previous training
process. The clean feature space is modelled as a mixture of
Gaussians for each phoneme. The noisy space is split in several
basic acoustic environments and each environment is modelled
as a mixture of Gaussians for each phoneme. The transforma-
tions are estimated for all basic environments between a clean
phoneme Gaussian and a noisy Gaussian of the same phoneme.
This can be shown in Fig. 1 for one environment, wheresphx is
the clean model Gaussian associated to the phonemeph, se,phy

is the noisy model Gaussian associated to the basic environment
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Figure 1. Scheme of PD-MEMLIN transformations for one environ-
ment.

2.1. PD-MEMLIN approximations

• Clean feature vectors,xt, are modelled using a GMM of
C components for each phoneme,ph (assuming that all the
phonemes are modelled with the same number of components)

pph(xt) =
C∑

s
ph
x =1

p(xt|s
ph
x )p(s

ph
x ), (1)

p(xt|s
ph
x ) = N(xt;μsphx

,Σ
s
ph
x
), (2)

whereμ
s
ph
x

,Σ
s
ph
x

, andp(sphx ) are the mean vector, the diagonal
covariance matrix, and the a priori probability associated with
the clean model Gaussiansphx of theph phoneme.
• Noisy space is split into several basic environments,e,

and the noisy feature vectors,yt, are modeled as a GMM ofC′

components for each basic environment and phoneme (assum-
ing that all the phonemes of the all the basic environments are
modelled with the same number of components)

pe,ph(yt) =
C′∑

s
e,ph
y =1

p(yt|s
e,ph
y )p(se,phy ), (3)

p(yt|s
e,ph
y ) = N(yt;μse,phy

,Σ
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y
), (4)

wherese,phy denotes the corresponding Gaussian of the noisy
model for thee basic environment and theph phoneme;μ

s
e,ph
y

,

Σ
s
e,ph
y

, andp(se,phy ) are the mean vector, the diagonal covari-

ance matrix, and the a priori probability associated withse,phy .
• Clean feature vectors can be approximated as a linear

function,Ψ, of the noisy feature vector which depends on the ba-
sic environments, the phonemes and the clean and noisy model
Gaussians:x ≈ Ψ(yt, sphx , s

e,ph
y ) = yt − rsphx ,se,phy

, where

r
s
ph
x ,s

e,ph
y

is the bias vector transformation between noisy and

clean feature vectors for each pair of Gaussians,sphx andse,phy .

2.2. PD-MEMLIN enhancement

With those approximations, PD-MEMLIN transforms the
MMSE estimation expression,̂xt = E[x|yt], into (5), where
p(e|yt) is the a posteriori probability of the basic envi-
ronment; p(ph|yt, e) is the a posteriori probability of the

phoneme, given the noisy feature vector and the environ-
ment; p(se,phy |yt, e, ph) is the a posteriori probability of the
noisy model Gaussian,se,phy , given the feature vector,yt,
the basic environment,e, and the phoneme,ph. To esti-
mate those terms:p(e|yt), p(ph|yt, e) andp(se,phy |yt, e, ph),
equations (3) and (4) are applied as described in [6]. Fi-
nally, the cross-probability model,p(sphx |yt, e, ph, s

e,ph
y ), is the

probability of the clean model Gaussian,sphx , given the fea-
ture vector,yt, the basic environment,e, the phoneme,ph,
and the noisy model Gaussian,se,phy . The cross-probability
model is estimated in a training phase using stereo data
for each basic environment and phoneme(Xe,ph,Ye,ph) =
(xe,ph1 ,ye,ph1 ); ...; (xe,phte,ph

,ye,phte,ph
); ...; (xe,phTe,ph

,ye,phTe,ph
), with

te,ph ∈ [1, Te,ph] [6]. The cross-probability model is computed
avoiding the time dependence given by the noisy feature vector
as (6) (time-independent cross-probability model). On the other
hand, the bias vector transformation,r

s
ph
x ,s

e,ph
y

, is also com-

puted using the stereo data in the previous training phase [6].
The expressions for MEMLIN can be obtained directly from

the PD-MEMLIN ones if only one phoneme is considered [5].

3. CROSS-PROBABILITY MODEL PERFORMANCE

To study the performance of the cross-probability model in a
qualitative way, the histograms and scattegrams between the first
Mel Frequency Cepstral Coefficients (MFCCs) in non-silence
frames for different signals are depicted in Fig. 2.

Figure 2.a, which represents clean and noisy in real car con-
ditions feature vectors, shows the effects of car noise. The pdf
of clean first MFCCs is clearly affected (Fig.2.a.1), and the un-
certainty is increased (Fig.2.a.2).

Since we only want to observe the importance of the cross-
probability model, and PD-MEMLIN performance is highly de-
pendent of the probability of the phoneme, given the environ-
ment and the noisy feature vector,p(ph|yt, e), we present re-
sults with MEMLIN in Fig. 2.b and 2.c. So, clean and normal-
ized coefficients with MEMLIN are represented in the Fig. 2.b.
MEMLIN is applied with 128 Gaussians. The pdf of normalized
first MFCCs has been approximated to the clean signal one (Fig.
2.b.1), and the uncertainty has been reduced (Fig. 2.b.2). The
peak that appears in Fig. 2.b.1 is due to the transformation of
noisy feature vectors towards the clean silence.

Finally, Fig. 2.c represents clean and normalized with
MEMLIN feature vectors where the cross-probability model is
computed with the corresponding clean feature vector as (7).
MEMLIN is also applied with 128 Gaussians. In this case the
pdf of the normalized signal is almost the same that the clean
one (Fig. 2.c.1) and the uncertainty is drastically reduced (Fig.
2.c.2). Furthermore, the WER results in this case are almost the
same that we would obtain with clean signal. These results ver-
ify the importance of a good estimation of the cross-probability
model in MEMLIN algorithm. Similar experiments were car-
ried out with PD-MEMLIN, obtain a similar satisfactory perfor-
mance.

p(sx|yt, e, s
e
y) '

p(sx)p(xt|sx)∑
sx
p(sx)p(xt|sx)

. (7)

4. CROSS-PROBABILITY MODEL BASED ON GMM

To improve the time-independent cross-probability model, we
propose to model the noisy feature vectors associated to a pair
of Gaussians (sx andsy) with a GMM of C′′ components (as-
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Figure 2. Scattegrams and histograms between the first MFCC in
non-silence frames for different signals. The line in the scattergrams
represents the functionx = y.

suming that all the pair of Gaussians,sx andsy, are modelled
with the same number of Gaussians

p(yt|sx, sy) =
C′′∑

s′y=1

p(yt|sx, sy, s
′
y)p(s

′
y|sx, sy), (8)

p(yt|sx, sy, s
′
y) = N(yt;μsx,sy,s′y ,Σsx,sy ,s′y ), (9)

whereμsx,sy ,s′y ,Σsx,sy ,s′y , andp(s′y|sx, sy) are the mean, the
diagonal covariance matrix, and the a priori probability associ-
ated withs′y Gaussian of the cross-probability GMM associated
with sx andsy. To train these three parameters, the EM algo-
rithm [8] is applied. The basic environments and the phonemes
are not indexed for clarity, but they can be considered indepen-
dently.

Let a set of clean and noisy stereo data available to learn the
corresponding cross-probability GMM parameters(X,Y) =
{(x1,y1), ...(xn,yn)..., (xN ,yN )}. Eachyn can be seen as
an incomplete component-labelled frame, which is completed
by two indicator vectors. The first one iswn ∈ {0, 1}C

′
, with 1

in the position corresponding to thesy Gaussian generatingyn
and zeros elsewhere (W = {w1, ...,wN}). The second indica-
tor vector iszn ∈ {0, 1}C

′′
, with 1 in the position correspond-

ing to thes′y Gaussian of the cross-probability GMM generating
yn and zeros elsewhere (Z = {z1, ..., zN}). Eachxn can be
seen also as an incomplete component-labelled frame, which is
completed by one indicator vector:vn ∈ {0, 1}C , with 1 in the
position corresponding to thesx Gaussian generatingxn and
zeros elsewhere (V = {v1, ...,vN}). The indicator vectors are
called missing data, too. So, the complete data pdf is

p(x,y,v,w, z) ' p(v,w)p(x|v,w)×

p(v,w, z)p(y|v,w, z), (10)

where it is assumed thatx is independent ofy andz. Since
the indicator vectors are Multinomial, the complete data pdf can
be expressed as (11), wherevsx , wsy andzs′y are the compo-
nents ofv, x andz associated to the Gaussianssx, sy ands′y,
respectively.

The EM algorithm is applied iteratively in two steps. The
Expectation (E) step, which estimates the expected values of the
missing data, and the Maximization (M) step, which obtains the
parameters of the cross-probability GMM using the estimated
missing data.

4.1. The E step

To evaluate the E step, the functionQ(Θ|Θ(k)) is defined
asQ(Θ|Θ(k)) = E[log(p(X,Y,V,W,Z|Θ))|X,Y,Θ(k)],
whereE[•] is the expected value,k is the iteration index and
Θ includes the unknown parameters of the cross-probability
GMM. It is expressed as (12), where

(vsxwsy )
(k) ' E[vsx |xn]E[wsy |yn], (13)

(vsxwsyzs′y )
(k) ' (vsxwsy )

(k)E[zs′y |yn, vsx , wsy ,Θ
(k)],

(14)
where it is assumed thatvsx and wsy are in-

dependent, E[vsx |xn,yn,Θ
(k)] ' E[vsx |xn]

and E[wsy |xn,yn,Θ
(k)] ' E[wsy |yn].

E[zs′y |yn, vsx , wsy ,Θ
(k)] is estimated with (8) and (9)

as (15), andE[vsx |xn] and E[wsy |yn] are computed in a
similar way with (1) and (2), and with (3) and (4), respectively,
assuming that there is only one phoneme. Although, in this
work, to simplify, E[vsx |xn] andE[wsy |yn] values are 1, if
the corresponding Gaussians are the most probable ones, and 0
in any other case (hard Gaussian estimation approach).

4.2. The M step

To obtain the maximum likelihood estimates for the parameters
of the cross-probability GMM,Q(Θ|Θ(k)) is maximized with
respect to them. So, the corresponding expressions for the(k +
1)th iteration are
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∑
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(k)N(yn|μ

(k)
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,Σ
(k)

sx,sy,s′y
)

∑
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sx,sy,s′y
)
. (15)

Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 1.90 2.64 1.81 1.75 1.62 0.64 0.35 1.75

CLK HF 5.91 14.49 14.55 20.17 21.07 16.1935.71 16.21

HF HF 6.67 14.24 12.73 12.91 14.97 9.68 8.50 11.81

†HF HF 2.86 7.12 4.34 4.39 7.63 4.60 4.76 5.30

Table 1. WER baseline results, in%, from the different basic environments (E1,..., E7).

p(s′y|sx, sy)
(k+1) =

∑
n(vsxwsyzs′y )

(k)

∑
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∑
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(k)
. (16)
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=

∑
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∑
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∑
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(k)(yn − μ
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)t.

(18)
Once the cross-probability GMM parameters are estimated

for each basic environment,p(sx|yt, e, sey) can be obtained for
MEMLIN with (8) as (19). Note that the time-independent as-
sumption has been avoided.

p(sx|yt, e, s
e
y) =

p(yt|sx, sey)∑
sx
p(yt|sx, sey)

. (19)

For PD-MEMLIN, the cross-probability GMM parameters
are estimated for each basic environment and phoneme indepen-
dently, andp(sphx |yt, e, ph, s

e,ph
y ) is computed in a similar way

as (19).

5. RESULTS

To observe the performance of the cross-probability GMM pro-
posed in a real, dynamic, and complex environment, a set of
experiments were carried out using the Spanish SpeechDat Car
database [7]. Seven basic environments were defined: car
stopped, motor running (E1), town traffic, windows close and
climatizer off (silent conditions) (E2), town traffic and noisy
conditions: windows open and/or climatizer on (E3), low speed,
rough road, and silent conditions (E4), low speed, rough road,
and noisy conditions (E5), high speed, good road, and silent
conditions (E6), and high speed, good road, and noisy condi-
tions (E7).

The clean signals are recorded with a CLose talK (CLK)
microphone (Shure SM-10A), and the noisy ones are recorded
by a Hands-Free (HF) microphone placed on the ceiling in front

of the driver (Peiker ME15/V520-1). The SNR range for CLK
signals goes from 20 to 30 dB, and for HF ones goes from 5 to
20 dB.

For speech recognition, the feature vectors are composed of
the 12 MFCCs, first and second derivatives and the delta energy,
giving a final feature vector of 37 coefficients computed every
10 ms using a 25 ms Hamming window. On the other hand, in
this work, the feature vector normalization methods are applied
only to the 12 MFCCs and energy, whereas the derivatives are
computed over the normalized static coefficients

The recognition task is isolated and continuous digits recog-
nition. Three-state 16 Gaussian continuous density HMM to
model the 25 Spanish phonemes and 2 silence models for long
and interword silences are used in this task.

The Word Error Rate (WER) baseline results for each ba-
sic environment are presented in Table 1, where MWER is the
Mean WER computed proportionally to the number of words in
each basic environment. Cepstral mean normalization is applied
to testing and training data. “Train” column refers to the sig-
nals used to obtain the corresponding acoustic HMMs: CLK if
they are trained with all clean training utterances, and HF and if
they are trained with all noisy ones. HF† indicates that specific
acoustic HMMs for each basic environment are applied in the
recognition task (environment match condition). “Test” column
indicates which signals are used for recognition: clean, CLK, or
noisy, HF.

Table 1 shows the effect of real car conditions, which in-
creases the WER in all of the basic environments, (Train CLK,
Test HF), concerning the rates for clean conditions, (Train CLK,
Test CLK). When acoustic models are retrained using all ba-
sic environment signals, (Train HF) MWER decreases. Finally,
5.30% of MWER is obtained for environment match condition.

Figure 3 shows the mean improvement in WER (MIMP)
in % for MEMLIN with Time-Independent cross-probability
model (MEMLIN TI) and with Time-Dependent cross-
probability GMM (MEMLIN TD). Also the results with
SPLICE with Environmental Model Selection (SPLICE EMS)
[4] are included. A 100% MIMP would be achieved when
MWER equals the same of clean conditions. The cross-
probability GMMs are composed by 2 Gaussians. It can be
observed the important improvement of MEMLIN TD concern-
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ing MEMLIN TI: from 42.55% to 63.38% with 4 Gaussians per
basic environment and from 70.58% to 78.47% with 128 Gaus-
sians.

On the other hand, the mean improvement in WER for
PD-MEMLIN with Time-Independent cross-probability model
(PD-MEMLIN TI) and with Time-Dependent cross-probability
GMM (PD-MEMLIN TD) are depicted in Figure 4. The re-
sults obtained with SPLICE with Environmental Model Selec-
tion (SPLICE EMS) are also included to compare. The cross-
probability GMMs are composed by 2 Gaussians for each pair
of clean and noisy Gaussians of the same phoneme. To make
a fair comparison between the methods, the results have been
plotted as a function of the number of Transformations per ba-
sic Environment,TpE, which each method has to compute for
each frame in normalization, inlog10

TpE = log10(nsphy
n
s
ph
x
nph), (20)

wheren
s
ph
y

andn
s
ph
x

are the number of noisy and clean model

Gaussians forph phoneme, respectively, andnph is the number
of phonemes (nph = 1, for SPLICE EMS).

It can be observed a slight improvement of PD-MEMLIN
TD concerning PD-MEMLIN TI whenTpE is higher: from
65.71% to 70.94% with 2 Gaussians per phoneme, and a big-
ger improvement when the phonemes are modelled with few

Gaussians (lowerTeP ): from 75.43% to 77.72% with 16 Gaus-
sians. Note that the critical point in PD-MEMLIN is not only the
cross-probability model but also the probability of the phoneme,
given the noisy feature vector and the environment,p(ph|yt, e).
So, there is still one term that needs to be improved in PD-
MEMLIN.

Although the number of Gaussians to model the basic en-
vironments could be the same for MEMLIN TI and MEMLIN
TD or for PD-MEMLIN TI and PD-MEMLIN TD, the comput-
ing time is not the same. To reduce it, only the cross-probability
GMMs of the most probable pairs of Gaussians can be computed
in normalization. In this case, for each noisy feature vector, the
most probable PHonemes and Noisy model Gaussians (]PH and
]NG) can be obtained with (3) and (4), and for each one, the
corresponding most probable Clean model Gaussians (]CG) are
obtained with (6) (No phoneme dependence for MEMLIN).

Table 2 shows the results for MEMLIN TD for different
]NG and]CG. In all cases the cross-probability GMMs are com-
posed by 2Gaussians.

]NG ]CG MWER MIMP

MEMLIN TD 4-4 4 4 7.04 63.40

MEMLIN TD 8-8 4 4 6.87 64.40

MEMLIN TD 16-16 8 8 5.67 72.87

MEMLIN TD 32-32 8 8 5.62 73.23

MEMLIN TD 64-64 16 16 5.44 74.46

MEMLIN TD 128-128 32 32 5.11 76.77

Table 2. Mean WER (MWER) and mean improvement in WER
(MIMP) in % for MEMLIN TD when different Gaussians of
cross-probability GMM are computed.

Table 3 shows the results for PD-MEMLIN TD for different
]PH, ]NG and]CG. In all cases the cross-probability GMMs
are composed by 2 Gaussians. It can be observed that in MEM-
LIN TD and PD-MEMLIN TD it is not necessary to compute
the cross-probability for all the Gaussians to obtain satisfactory
results due to all of them has not the same importance.

6. CONCLUSIONS

In this paper we have presented an approach of MEMLIN and
PD-MEMLIN where the cross-probability model is estimated
by modelling the noisy feature vectors associated to each pair
of Gaussians from the clean and the noisy basic environment
spaces with a GMM. MEMLIN obtains an improvement in
WER of 70.21% with 128 Gaussians per environment, whereas
MEMLIN with cross-probability GMM reaches 78.47% for
the same number of Gaussians to model each basic environ-
ment. On the other hand, PD-MEMLIN with 16 Gaussians per
phoneme obtains an improvement in WER of 75.43%, whereas
PD-MEMLIN with cross-probability GMM reaches 77.72%.
Since the computing cost for the proposed approach is higher,
an alternative is considered: only the cross-probability GMM
of the most probable pair of Gaussians are computed. So, only
with the 1024 most probable pair of Gaussians, an improvement
of 76.77% is obtained, when 128 Gaussians per basic environ-
ment are used in MEMLIN; and if the cross-probability model
GMM is computed over the 8125 most probable pair of Gaus-
sians, an improvement of 77.36% is obtained in PD-MEMLIN
when each phoneme is modelled wih 32 Gaussians.



]PH ]NG ]CG MWER MIMP

PD-MEMLIN TD 2-2 8 2 2 6.00 70.58

PD-MEMLIN TD 4-4 8 4 4 5.58 73.49

PD-MEMLIN TD 8-8 8 6 6 5.39 74.82

PD-MEMLIN TD 16-16 13 12 12 5.04 77.25

PD-MEMLIN TD 32-32 13 25 25 5.02 77.36

Table 3. Mean WER (MWER) and mean improvement in WER (MIMP) in% for PD-MEMLIN when different phonemes and
Gaussians of cross-probability GMM are computed.
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